Stability of the Periodic Toda Lattice in the Soliton Region
نویسندگان
چکیده
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the periodic (and slightly more generally of the quasi-periodic finite-gap) Toda lattice for decaying initial data in the soliton region. In addition, we show how to reduce the problem in the remaining region to the known case without solitons.
منابع مشابه
Asymptotic stability of Toda lattice solitons
We establish an asymptotic stability result for Toda lattice soliton solutions, by making use of a linearized Bäcklund transformation whose domain has codimension one. Combining a linear stability result with a general theory of nonlinear stability by Friesecke and Pego for solitary waves in lattice equations, we conclude that all solitons in the Toda lattice are asymptotically stable in an exp...
متن کاملThe Finite Non-periodic Toda Lattice: a Geometric and Topological Viewpoint
In 1967, Japanese physicist Morikazu Toda published the seminal papers [78] and [79], exhibiting soliton solutions to a chain of particles with nonlinear interactions between nearest neighbors. In the decades that followed, Toda’s system of particles has been generalized in different directions, each with its own analytic, geometric, and topological characteristics that sets it apart from the o...
متن کاملLong-time Asymptotics for the Toda Lattice in the Soliton Region
We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Toda lattice for decaying initial data in the soliton region. In addition, we point out how to reduce the problem in the remaining region to the known case without solitons.
متن کاملAsymptotic Stability of Lattice Solitons in the Energy Space
Orbital and asymptotic stability for 1-soliton solutions to the Toda lattice equations as well as small solitary waves to the FPU lattice equations are established in the energy space. Unlike analogous Hamiltonian PDEs, the lattice equations do not conserve momentum. Furthermore, the Toda lattice equation is a bidirectional model that does not fit in with existing theory for Hamiltonian system ...
متن کاملLong-time Asymptotics of the Toda Lattice for Decaying Initial Data Revisited
The purpose of this article is to give a streamlined and selfcontained treatment of the long-time asymptotics of the Toda lattice for decaying initial data in the soliton and in the similarity region via the method of nonlinear steepest descent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009